81.Search in Rotated Sorted Array II
Tags: [sort], [binary_search], [trick]
Link: https://leetcode.com/problems/search-in-rotated-sorted-array-ii/#/description
Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e.,0 1 2 4 5 6 7
might become4 5 6 7 0 1 2
).
Write a function to determine if a given target is in the array.
The array may contain duplicates.
Solution: Binary Search, Trick
class Solution(object):
def search(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: bool
"""
if not nums or target is None:
return False
return self.search_helper(nums, 0, len(nums) - 1, target)
def search_helper(self, nums, start, end, target):
# base case
if start > end:
return False
mid = start + (end - start) / 2
if nums[mid] == target:
return True
if nums[start] < nums[mid]:
# the sub array [start:mid + 1] is sorted.
if nums[start] <= target < nums[mid]:
return self.binary_search(nums, start, mid - 1, target)
else:
return self.search_helper(nums, mid + 1, end, target)
elif nums[start] > nums[mid]:
# the sub array [mid:end + 1] is sorted.
if nums[mid] < target <= nums[end]:
return self.binary_search(nums, mid + 1, end, target)
else:
return self.search_helper(nums, start, mid - 1, target)
else:
# nums[start] == nums[mid], cannot know which part is sorted.
return self.search_helper(nums, start, mid - 1, target) or\
self.search_helper(nums, mid + 1, end, target)
def binary_search(self, nums, start, end, target):
while start <= end:
mid = start + (end - start) / 2
if nums[mid] == target:
return True
elif nums[mid] < target:
start = mid + 1
else:
end = mid - 1
return False
Revelation:
- When nums[start] == nums[mid], we cannot know which part is sorted, for example, the original nums = [1,1, 1, 1,1 1, 1, 2, 3], the rotated nums = [1, 1, 2, 3, 1, 1, 1, 1, 1], start = 0, end = 8, mid = 4, nums[start] = 1, nums[mid] = 1, but the sub array [start:mid + 1] is not sorted.
Note:
- Time complexity = O(n), n is the number of elements of the given nums.