449.Serialize and Deserialize BST
Tags: [BST], [binary_tree], [postorder_traversal], [inorder_traversal], [serialization], [deserialization]
Link: https://leetcode.com/problems/serialize-and-deserialize-bst/?tab=Description
Serialization is the process of converting a data structure or object into a sequence of bits so that it can be stored in a file or memory buffer, or transmitted across a network connection link to be reconstructed later in the same or another computer environment.
Design an algorithm to serialize and deserialize abinary search tree. There is no restriction on how your serialization/deserialization algorithm should work. You just need to ensure that a binary search tree can be serialized to a string and this string can be deserialized to the original tree structure.
The encoded string should be as compact as possible.
Note:Do not use class member/global/static variables to store states. Your serialize and deserialize algorithms should be stateless.
Solution: using postorder traversal sequence and inorder traversal sequence to build binary tree
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Codec:
def serialize(self, root):
"""Encodes a tree to a single string.
:type root: TreeNode
:rtype: str
"""
if not root:
return ''
preorder = []
self.preorder_traverse(root, preorder)
inorder = []
self.inorder_traverse(root, inorder)
return ','.join([str(node.val) for node in preorder]) + ',' + ','.join([str(node.val) for node in inorder])
def preorder_traverse(self, root, rest):
# base case
if not root:
return
# root
rest.append(root)
# left
self.preorder_traverse(root.left, rest)
# right
self.preorder_traverse(root.right, rest)
def inorder_traverse(self, root, rest):
# base case
if not root:
return
# left
self.inorder_traverse(root.left, rest)
# root
rest.append(root)
# right
self.inorder_traverse(root.right, rest)
def deserialize(self, data):
"""Decodes your encoded data to tree.
:type data: str
:rtype: TreeNode
"""
if not data:
return None
arr = [int(x) for x in data.split(',')]
preorder = arr[:len(arr) / 2]
inorder = arr[len(arr) / 2:]
return self.build_tree(preorder, 0, len(preorder) - 1, inorder, 0, len(inorder) - 1)
def build_tree(self, preorder, p_start, p_end, inorder, in_start, in_end):
# base case
if p_start < 0 or p_end >= len(preorder) or p_start > p_end or\
in_start < 0 or in_end >= len(inorder) or in_start > in_end:
return None
root = TreeNode(preorder[p_start])
root_index_in_inorder = inorder.index(root.val)
num_of_nodes_left_sub_tree = root_index_in_inorder - in_start
num_of_nodes_right_sub_tree = in_end - root_index_in_inorder
left_sub_tree_p_start = p_start + 1
left_sub_tree_p_end = left_sub_tree_p_start + num_of_nodes_left_sub_tree - 1
right_sub_tree_p_start = left_sub_tree_p_end + 1
right_sub_tree_p_end = p_end
left_sub_tree_in_start = in_start
left_sub_tree_in_end = root_index_in_inorder - 1
right_sub_tree_in_start = root_index_in_inorder + 1
right_sub_tree_in_end = in_end
root.left = self.build_tree(preorder, left_sub_tree_p_start, left_sub_tree_p_end,
inorder, left_sub_tree_in_start, left_sub_tree_in_end)
root.right = self.build_tree(preorder, right_sub_tree_p_start, right_sub_tree_p_end,
inorder, right_sub_tree_in_start, right_sub_tree_in_end)
return root
# Your Codec object will be instantiated and called as such:
# codec = Codec()
# codec.deserialize(codec.serialize(root))
Revelation:
- Use any two of preorder traversal, inorder traversal, and postorder traversal sequences can build (re-build) the binary tree.
Note:
- Serialization time complexity = O(n), n is the number of nodes in the given tree.
- Deserialization time complexity = O(n), n is the number of nodes in the given tree.
- Be careful of the base case of the above the recursion.
Question:
- Is the above algorithm still correct, if there exists duplicate nodes(value) in the binary tree. (BST allows duplicates nodes values).
Answer:
- The above algorithm(code) will generate errors, when there exists duplicate nodes(values) in the binary tree.