373.Find K Pairs with Smallest Sums
Tags: [heap]
Link: https://leetcode.com/problems/find-k-pairs-with-smallest-sums/#/description
You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.
Define a pair(u,v)which consists of one element from the first array and one element from the second array.
Find the k pairs (u1,v1), (u2,v2) ... (uk,vk) with the smallest sums.
Example 1:
Given nums1 = [1,7,11], nums2 = [2,4,6], k = 3
Return: [1,2],[1,4],[1,6]
The first 3 pairs are returned from the sequence:
[1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:
Given nums1 = [1,1,2], nums2 = [1,2,3], k = 2
Return: [1,1],[1,1]
The first 2 pairs are returned from the sequence:
[1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
Example 3:
Given nums1 = [1,2], nums2 = [3], k = 3
Return: [1,3],[2,3]
All possible pairs are returned from the sequence:
[1,3],[2,3]
Solution: Heap
class Solution(object):
class HeapNode(object):
def __init__(self, elem1, elem2, elem2_index):
self.elem1 = elem1
self.elem2 = elem2
self.elem2_index = elem2_index
def __cmp__(self, other):
return (self.elem1 + self.elem2) - (other.elem1 + other.elem2)
def kSmallestPairs(self, nums1, nums2, k):
"""
:type nums1: List[int]
:type nums2: List[int]
:type k: int
:rtype: List[List[int]]
"""
if not nums1 or not nums2 or not k:
return []
min_heap = []
for elem1 in nums1:
min_heap.append(self.HeapNode(elem1, nums2[0], 0))
nums1_len = len(nums1)
nums2_len = len(nums2)
result = []
for _ in xrange(min(k, nums1_len * nums2_len)):
heap_root = heapq.heappop(min_heap)
result.append([heap_root.elem1, heap_root.elem2])
if heap_root.elem2_index + 1 < nums2_len:
heapq.heappush(min_heap, self.HeapNode(heap_root.elem1,
nums2[heap_root.elem2_index + 1],
heap_root.elem2_index + 1))
return result
Revelation:
- Next time, when we meet the problems which is asking for the kth smallest / biggest pairs, and there are multiple dimensional inputs, and each dimensional input is sorted, we can think about using the heap in this way to solve these problems.
- We use out of all elements from one dimension, and each time heap pop one node, then heap push another dimension element into heap.
Note:
- Time complexity = O(nums1_len + min(k, nums1_len * nums2_len * lg (nums1_len * nums2_len))), nums1_len is the number of elements in nums1, and nums2_len is the number of elements in nums2.